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Abstract

The dynamics of motile particles, such as microbes, in random porous media are modeled with a hierarchical set of stochas-
tic differential equations which correspond to micro, meso and macro scales. On the microscale the motile particle is modeled
as an operator stable Lévy process with stationary, ergodic, Markov drift. The micro to meso and meso to macro scale homog-
enization is handled with generalized central limit theorems. On the mesoscale the Lagrangian drift (or the Lagrangian accel-
eration) is assumed Lévy to account for the fractal character of many natural porous systems. Diffusion on the mesoscale is a
result of the microscale asymptotics while diffusion on the macroscale results from the mesoscale asymptotics. Renormalized
Fokker–Planck equations with time dependent dispersion tensors and fractional derivatives are presented at the macro scale.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Self-motile colloidal-sized particles, such as microbes, play a fundamental role in the transport of constit-
uents and fluids in natural porous media. The ability to swim allows a microbe to move in a preferential direc-
tion toward desirable energy sources (light, chemical, magnetic, thermal, etc.) [2]. Randomly swimming
microbes can often be modeled as a-stable Lévy motions [11]. Using the concept of directional preference
put forth in [8], swimming in a preferential direction based on an energy gradient can be modeled using an
operator-stable Lévy motion.

Uncertainty in microbial dynamics is manifest on several scales within porous media. We attempt to quan-
tify this uncertainty on three scales via use of renormalizing central limit theorems applied to integrated sto-
chastic differential equations. In subsequent analysis we model the meso scale drift in two ways. The first
parallels that of [10,11] with the Lagrangian velocity a-stable Lévy. The second and novel approach is to
model the Lagrangian mesoscale acceleration as a-stable Lévy.
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Lévy motions are ubiquitous in physics [15] and it is known that the transition densities, f, for a-stable Lévy
and operator-stable Lévy motions satisfy the following Fokker–Planck equations [8],
of
ot
¼ �v � rf þ Draf ð1Þ
and
of
ot
¼ �v � rf þ 1

2
r �A � r þF

� �
f ; ð2Þ
respectively. Here v is a divergence-free convective velocity, A is a symmetric positive definite d · d matrix of
diffusion coefficients, D = �1/cos(pa/2) describes the spreading rate of the dispersion, $a is the fractional
Laplacian:
dðrafÞðkÞ ¼
Z

Sd

ð�ik � sÞaMvðdsÞ
� �

f̂ ; ð3Þ
where k Æ s is the inner product and Mv is a finite measure on Sd = {s 2 Rd : jsj = 1}. The generalized fractional
derivative Ff is the inverse Fourier transform of
dFf ðkÞ � bBf̂ ðkÞ ¼
Z

Rd
eik�y � 1� ik � y
� �

mðdyÞ
� �

f̂ ðkÞ; ð4Þ
where m is the Lévy measure [4,9,14] and bB is a wavevector-dependent operator. The main difference between
(1) and (2) is that in the former equation the order of the fractional derivative is the same in each direction,
while in the later it changes with direction and it is this latter character that allows one to model swimming in
preferential directions.

Many natural porous media exhibit a fractal character over some range of scales [1,12,16]. This fractal
structure can induce fractal Lagrangian velocities or accelerations for conservative particles. Since an a-stable
Lévy motion is a fractal with divider dimension a, we may without loss of generality model the drift velocity or
acceleration in a fractal medium as a Lévy process. The degree of stability can be obtained experimentally by
using particle tracking velocimetry (PTV) in conjunction with the finite-size Lyapunov exponent (FSLE) [6].

In subsequent sections we (i) review a-stable and operator-stable Lévy motions; (ii) assume a microbes
behavior at the microscale (pore scale) is governed by a stochastic ordinary differential equation with station-
ary, ergodic, Markov drift and operator-stable Lévy diffusion; (iii) upscale the microscale equation to the
mesoscale via a generalized central limit theorem (CLT); (iv) assume the drift on the mesoscale is a-stable Lévy
with diffusion determined by the microscale asymptotics and again upscale via another CLT to the macroscale;
(v) assume the acceleration on the mesoscale is a-stable Lévy with diffusion determined by the microscale
asymptotics and again upscale via a CLT to the macroscale. The paper concludes with a brief summary of
the results.

2. a-Stable Lévy and operator-stable Lévy processes

Consider the following integrated stochastic ordinary differential equation (SODE) in three dimensions:
XðtÞ ¼ Xð0Þ þ
Z t

0

VðrÞdr þ qLðtÞ; t P 0; ð5Þ
where the stochastic process {V(r)} is a-stable Lévy, q is a constant and qL(t) is an operator-stable Lévy pro-
cess [8]. Let eVðtÞ ¼ VðtÞ � Vð0Þ and eXðtÞ ¼ XðtÞ � Xð0Þ. For each t, eVðtÞ has an a-stable distribution [5,7,13]
ðeVðtÞ � SavðtMv; tlvÞÞ, whose characteristic function, /v, is
/vðt; kÞ ¼ exp �t
Z

Sd

jk � sjav 1� isgnðk � sÞ tan
avp
2

� 	� 	
MvðdsÞ þ itk � lvÞ

� �
; ð6Þ
where 0 < av 6 2, av 6¼ 1 and sgn(x) = 1 if x > 0, 0 if x = 0 and �1 otherwise and lv is the mean tensor for the
a-stable distribution. When av = 1
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/vðt; kÞ ¼ exp �t
Z

Sd

jk � sj 1þ i
2

p
sgnðk � sÞ log jk � sj

� �
MvðdsÞ þ itk � lvÞ

� �
. ð7Þ
Henceforth, for simplicity in presentation we assume av 6¼ 1. Let
YðtÞ ¼
Z t

0

VðrÞdr;
and decompose Y(t) as
YðtÞ ¼
Z t

0

ðVð0Þ þ eVðrÞÞdr ¼ tVð0Þ þ eYðtÞ;

where eYðtÞ ¼ R t

0
eVðrÞdr.

For each t, the characteristic function, /y, of eYðtÞ is
/yðt; kÞ ¼ exp � t1þav

1þ av

Z
Sd

jk � sjav 1� isgnðk � sÞ tan
pav

2

� 	� 	
MvðdsÞ þ it2

2
k � lv

� �
. ð8Þ
The proof is given in [10].

3. Upscaling from microscale to mesoscale

On the microscale we assume the behavior of microbes depends on direction and so the integrated SODE is
of the form
Xð0ÞðtÞ ¼ Xð0Þð0Þ þ
Z t

0

Vð0ÞðrÞdr þ qð0ÞLð0ÞðtÞ; t P 0; ð9Þ
where V(0)(r) is assumed stationary, ergodic and Markovian with the mean Vð0Þ, and q(0)L(0)(t) is an operator-
stable Lévy process. Here, the superscript (0) means microscale. (We use (1) for mesoscale and (2) for macro-
scale.) The characteristic function, /‘, of q(0)L(0)(t) is [8]
/‘ðt; kÞ ¼ exp½itk � l‘ � tk �A � kþ tbBðkÞ�; ð10Þ

where tlð0Þ‘ ¼ E½Lð0ÞðtÞ� is the expected value of q(0)L(0)(t).

By using the classical central limit theorem it has been shown [3] that as k!1,
k�1=2

Z kt

0

Vð0ÞðrÞ � Vð0Þ
� �

dr!d Bð1ÞðtÞ; ð11Þ
a Brownian motion, where !d means the convergence in distribution.
Let Z

ð0Þ
k ðtÞ ¼ ðqð0ÞLð0ÞðktÞ � ktlð0Þ‘ Þ=k

1=2. Then the natural logarithm of the characteristic function, /k, of
Z
ð0Þ
k ðtÞ is
ln /kðt; kÞ ¼ ln E expðik � Zð0Þk ðtÞÞ
h i

¼ �tk �A � kþ t
Z

Rd
k eik�1=2k�‘ � 1� ik�1=2k � ‘
� 	

mðd‘Þ

¼ �tk �A � kþ t
Z

Rd
kðcosðk�1=2k � ‘Þ � 1Þmðd‘Þ þ it

Z
Rd

kðsinðk�1=2k � ‘Þ � k�1=2k � ‘Þmðd‘Þ.
Observe that the integrands of the two integrals are monotonically increasing as k!1. By the monotone
convergence theorem, the two sequences of integrals converge. Therefore, for each k
ln /kðt; kÞ ! �tk �A � k� t
Z

Rd

1

2
ðk � ‘Þ2mðd‘Þ

� �
; k!1.
Hence,
Z
ð0Þ
k ðtÞ!

d
Zð1ÞðtÞ; k!1 ð12Þ
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whose characteristic function, /z, is
/zðt; kÞ ¼ exp �tk �A � k� t
2

Z
Rd
ðk � ‘Þ2mðd‘Þ

� �
. ð13Þ
In order to use (11) and (12), we look at
eXð0ÞðktÞ � ktðVð0Þ þ l
ð0Þ
‘ Þ

k1=2
¼ YðktÞ � ktVð0Þ

k1=2
þ qLðktÞ � ktlð0Þ‘

k1=2
.

Eqs. (11) and (12) then show convergence in distribution:
eXð0ÞðktÞ � ktðVð0Þ þ l
ð0Þ
‘ Þ

k1=2
!d ðBð1ÞðtÞ þ Zð1ÞðtÞÞ � qð1ÞeLð1ÞðtÞ; ð14Þ
whose characteristic function, w‘, is
w‘ðt; kÞ ¼ exp �t
Z

Sd

jk � sÞj2MlðdsÞ � tk �A � k� t
2

Z
Rd
ðk � ‘Þ2mðd‘Þ

� �
. ð15Þ
4. Upscaling from mesoscale to macroscale with V(1)(t) av-stable Lévy

Let V(1)(t) be av-stable Lévy with 1 < av 6 2. We assume that for each t, V(1)(t) has constant mean and
V(1)(0) has an initial distribution pv.
EðVð1ÞðtÞÞ ¼ EðVð1Þð0ÞÞ ¼ Vð1Þ for any t P 0. ð16Þ

Since EðeVð1ÞðtÞÞ ¼ 0 for each time t, lv = 0. We also assume periodicity of V(1)(t) ” V(1)(t, n(1)(0)) in the initial
data:
Vð1Þðt; nð1Þð0Þ þ mð1ÞÞ ¼ Vð1Þðt; nð1Þð0ÞÞ;

where mð1Þ ¼ ðmð1Þ1 ; . . . ; mð1Þd Þ for integers mð1Þk ; k ¼ 1; . . . ; d and n(1)(Æ) = n(1)(Æ, x) is a random particle path in the
porous medium with x an elementary event. Let
½Vð1Þ� ¼ E
1

jX0j

Z
X0

1

jBj

Z
B

Vð1Þðt; nð1Þð0ÞÞdt dnð1Þð0Þ
� �

; ð17Þ
where X0 = X0(x) = {n(1) (0,x): n(1)(0,x) 2 [0,1]d} and B = B(x) = {t P 0:n(1)(t,x) 2 [0,1]d}. Set l
ð1Þ
‘ ¼ Vð0Þþ

l
ð0Þ
‘ and qð1ÞLð1ÞðtÞ ¼ l

ð1Þ
‘ þ qð1ÞeLð1ÞðtÞ.

For t = kt 0, we showed the convergence [10]:
Yð1Þðkt0Þ � kt0Vð1Þ

k1þ1=av
!d Wðt0Þ; k!1.
The characteristic function, ww, of W(t 0) is
wwðt0; kÞ ¼ exp � t01þav

1þ av

Z
Sd

jk � sjav 1� isgnðk � sÞ tan
pav

2

� 	� 	
MvðdsÞ

� �
. ð18Þ
Let eYð2Þðt0Þ ¼ limk!1 eYð1Þðkt0Þ. Thus, for each t > 0 we have
Yð2ÞðtÞ � tVð1Þ þ eYð2ÞðtÞ. ð19Þ

To obtain a central limit theorem for eXð1ÞðtÞ, let
Z
ð1Þ
k ðt0Þ �

eXð1Þðkt0Þ � ð½Vð1Þ� þ l
ð1Þ
‘ Þkt0

k1þ1=av

¼ t0ðVð1Þ � ½Vð1Þ�Þ
k1=av

þ Yð1Þðkt0Þ � kt0Vð1Þ

k1þ1=av
þ qð1ÞLð1Þðkt0Þ � kt0lð1Þ‘

k1þ1=av
. ð20Þ



M. Park, J.H. Cushman / Journal of Computational Physics 217 (2006) 159–165 163
As k!1, the first and second terms of the right hand side of (20) converge to zero and eYð2Þðt0Þ in distribu-
tion, respectively. To obtain the convergence of the last term of the right hand side of (20), we consider the
natural logarithm of its characteristic function:
ln E exp ik�1�1=av k � qð1ÞLð1Þðkt0Þ � kt0lð1Þ‘
� 	� 	h i

¼ t0
Z

Rd
kðeik�1�1=av k�‘ � 1� ik�1�1=av k � ‘Þmðd‘Þ � t0k�1�2=av k �A � k ð21Þ
By the monotone convergence theorem, the right hand side of (21) converges to zero as k!1. So, Z
ð1Þ
k ðt0Þ

converges to eYð2Þðt0Þ in distribution. Thus, for each t > 0, we can approximate the stochastic processeXð2ÞðtÞ ¼ limk!1 eXð1ÞðktÞ as
eXð2ÞðtÞ � t ½Vð1Þ� þ l
ð1Þ
‘

� 	
þ eYð2ÞðtÞ. ð22Þ
It is possible to derive the Fokker–Planck (Advection–Dispersion) equation [10] that the transition density
f(t,x) for eXð2ÞðtÞ satisfies:
of
ot
¼ �vð2Þ � rf þ Dð2ÞðtÞrav f ; ð23Þ
where vð2Þ ¼ ½Vð1Þ� þ l
ð1Þ
‘ , Dð2ÞðtÞ ¼ �tav= cosðpav=2Þ and $af is defined by
dðrafÞðt; kÞ ¼
Z

Sd

ð�ik � sÞaMvðdsÞ
� �

f̂ ðt; kÞ. ð24Þ
5. Upscaling from mesoscale to macroscale with a-stable Lévy acceleration

Next, we consider the Lagrangian acceleration to be fractal on the mesoscale rather than the velocity which
is the integral of the acceleration. As with the Lagrangian velocity, we assume that the Lagrangian accelera-
tion, A(1), on the mesoscale is aa-stable Lévy ðAð1Þ � SaaðtMa; tlaÞÞ with 1 < aa 6 2 and constant mean,
EðAð1ÞðtÞÞ ¼ EðAð1Þð0ÞÞ ¼ Að1Þ for each t > 0. Let
Yð1ÞðtÞ ¼
Z t

0

Z u

0

Að1ÞðrÞdr du.
We decompose Y(1)(t) as follows:
Yð1ÞðtÞ ¼
Z t

0

Z u

0

Að1Þð0Þ þ eAð1ÞðrÞ� 	
dr du ¼ t2

2
Að1Þð0Þ þ eYð1ÞðtÞ;
where
eYð1ÞðtÞ ¼ Z t

0

Z u

0

eAð1ÞðrÞdr du ð25Þ
and la ¼ EðeAð1ÞðrÞÞ ¼ 0. By switching the two integrals in (25), we obtain
eYð1ÞðtÞ ¼ Z t

0

ðt � rÞeAð1ÞðrÞdr.
For each t, the characteristic function, /y, of eYðtÞ is
/yðt; kÞ ¼ exp � t1þ2aa

2aað1þ 2aaÞ

Z
S3

jk � sjaawðk; s; aaÞMaðdsÞ
� �

; ð26Þ
where w(k, s, aa) = 1 � isgn(k Æ s)tan(paa/2). We can prove (26) in a fashion similar to that in [10].
We take the same assumption on the microscale as in the previous section. and upscale from mesoscale to

macroscale. We assume periodicity of A(1)(r) ” A(1)(r, n(1)(0)) in the initial data:
Að1Þðr; nð1Þð0Þ þ mð1ÞÞ ¼ Að1Þðr; nð1Þð0ÞÞ;
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where mð1Þ ¼ ðmð1Þ1 ; . . . ; mð1Þd Þ for integers mð1Þk ; k ¼ 1; . . . ; d and n(1)(Æ) = n(1)(Æ,x) is a particle path in the porous
medium. Let
½Að1Þ� ¼ E
1

jX0j

Z
X0

1

jBj

Z
B

Að1Þðt; nð1Þð0ÞÞdt dnð1Þð0Þ
� �

; ð27Þ
where X0 = X0(x) = {n(1)(0,x): n(1)(0,x) 2 [0,1]d} and B = B(x) = {t P 0:n(1)(t,x) 2 [0, 1]d}. Set qð1ÞLð1ÞðtÞ ¼
tlð1Þ‘ þ qð1ÞeLð1ÞðtÞ.

For t = kt 0, we can show the convergence by the same argument as in [10]:
Yð1Þðkt0Þ � 1
2
ðkt0Þ2Að1Þ

k2þ1=aa
!d Wðt0Þ; k!1.
The characteristic function, /w, of Wðt0Þ is the same as (26). Let eYð2Þðt0Þ ¼ limk!1 eYð1Þðkt0Þ. Thus, for each
t > 0 we have
Yð2ÞðtÞ � t2

2
Að1Þ þ eYð2ÞðtÞ. ð28Þ
To obtain a central limit theorem for eXð1ÞðtÞ, let
Z
ð1Þ
k ðt0Þ �

eXð1Þðkt0Þ � ðkt0Þ2
2
½Að1Þ� � kt0lð1Þ‘

k2þ1=aa

¼ ðt
0Þ2ðAð1Þ � ½Að1Þ�Þ

2k1=aa
þ

Yð1Þðkt0Þ � 1
2
ðkt0Þ2Að1Þ

k2þ1=aa
þ qð1ÞLð1Þðkt0Þ � kt0lð1Þ‘

k2þ1=aa
. ð29Þ
As k!1, the first and second terms of the right hand side of (29) converge to zero and eYð2Þðt0Þ in distribu-
tion, respectively. By the monotone convergence theorem, the last term of the right hand side of (29) converges
to zero in distribution as k!1. So, Zð1Þ

k ðt0Þ converges to eYð2Þðt0Þ in distribution. Thus, for each t > 0, we can
approximate the stochastic process eXð2ÞðtÞ ¼ limk!1 eXð1ÞðktÞ as
eXð2ÞðtÞ � t2

2
½Að1Þ� þ tlð1Þ‘

� �
þ eYð2ÞðtÞ. ð30Þ
It is possible to derive the Fokker–Planck (Advection–Dispersion) equation [10] that the transition density
f(t,x) for eXð2ÞðtÞ satisfies:
of
ot
¼ �vð2Þ � rf þ Dð2ÞðtÞraa f ; ð31Þ
where vð2Þ ¼ t½Að1Þ�=2þ l
ð1Þ
‘ and Dð2ÞðtÞ ¼ �t2aa= cosðpaa=2Þ.

6. Summary

We have been studying the movement of motile microbes in porous media for a number of years. This man-
uscript represents our latest attempt to capture, on multiple scales, the ability of a microbe to move in a pref-
erential direction toward an energy source. The preferential movement is governed by an operator-stable Lévy
motion at the pore (micro) scale. At this scale, the particle also experiences a convective drift velocity that is
stationary, ergodic and Markovian. The integrated SODE governing the particle transport is upscaled to the
Darcy (meso) scale via a generalized central limt theorem. At the Darcy scale diffusion is governed by the
asymptotics of the pore scale and drift is governed by an av-stable Lévy velocity process or an aa-stable Lévy
acceleration. The velocity/acceleration process was chosen to be Lévy to represent the fractal character of the
velocity/acceleration at the Darcy scale. The mesoscale integrated SODE was upscaled to the field (macro)
scale via application of a second central limit theorem. Fractional advective-dispersion equations with
time-dependent dispersion coefficients were presented at the macro scale.

In addition to its application to motile microbe transport in fractal porous media, the work presented has
application to other colloids and fractal biological media such as aerosols in lung tissue [16].
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